Plasmonic Single-Molecule Affinity Detection at 10⁻²⁰ Molar

Eleonora Macchia¹, Cinzia Di Franco², Cecilia Scandurra³, Lucia Sarcina³, Matteo Piscitelli⁴, Michele Catacchio¹, Mariapia Caputo¹, Paolo Bollella³, Gaetano Scamarcio^{4,5}, <u>Luisa Torsi^{3,†}</u>

¹Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Bari, 70125 Italy
²CNR IFN, Bari, 70125 Italy

³Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Bari, 70125 Italy ⁴Dipartimento Interateneo di Fisica, Università degli Studi di Bari Aldo Moro, Bari, 70125 Italy ⁵NEST, Istituto Nanoscienze – CNR and Scuola Normale Superiore, Pisa, I-56127 Italy [†] corresponding author's email: luisa.torsi@uniba.it

DNA can be readily amplified through replication, enabling the detection of a single-target copy. A comparable performance for proteins in immunoassays has yet to be fully assessed. Surface-plasmon-resonance (SPR) serves as a probe capable of performing assays at concentrations typically around 10^{-9} molar. In this study, plasmonic single-molecule assays for both proteins and DNA are demonstrated, achieving limits-of-detections (LODs) as low as 10^{-20} molar (1 ± 1 molecule in 0.1 mL), even in human serum, in 1 h. This represents an improvement in typical SPR LODs by eleven orders-of-magnitude. The single-molecule SPR assay is achieved with a millimeter-wide surface functionalized with a physisorbed biolayer comprising trillions of recognition-elements (antibodies or protein–probe complexes) which undergo an acidic or alkaline pH-conditioning [1]. Potentiometric and surface-probing imaging experiments reveal the phenomenon underlying this extraordinary performance enhancement. The data suggest an unexplored amplification process within the biomaterial, where pH-conditioning, driving the biolayer in a metastable state, induces a self-propagating aggregation of partially misfolded proteins, following single-affinity binding. This process triggers an electrostatic rearrangement, resulting in the displacement of a charge equivalent to 1.5e per 10^2 recognition elements. Such findings open new opportunities for reliable SPR-based biosensing at the physical detection limits, with promising applications in point-of-care plasmonic systems.

References

[1] E. Macchia, C. Di Franco, C. Scandurra, L. Sarcina, M. Piscitelli, et al., Advance Materials, 2025, vol.37, 2418610.