Triazabutadienes for the Immobilization of Electrodes with Biomolecules

Alison Parkin^{1,†} Alice Hewson¹, Lucy Hudson¹, Lucy Gregg¹, Nicholas D. J. Yates¹,

¹Department of Chemistry, University of York, YO10 5DD, UK † corresponding author's email: alison.parkin@york.ac.uk

We have been developing triazabutadiene molecules as a tool to enable light-activated covalent grafting of biomolecules onto electrode surfaces (Figure 1).^[1] This talk will describe the synthetic development of our toolkit of molecules and their application in new biosensors.^{[2], [3], [4]} We are able to graft to wide range of surfaces, including off the shelf silicon wafers. The stability of the immobilization is particularly useful is enabling us to apply Fourier transform voltammetry to interrogate our modified electrode surfaces.^[5]

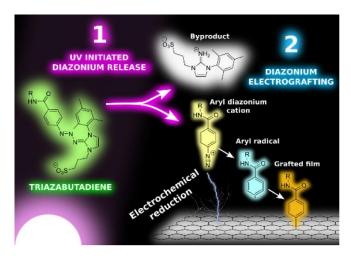


Figure 1: Light-driven electrografting of a triazabutadiene.

Acknowledgments

This work has been funded by UKRI Horizon Europe Guarantee Project "Enzyme e-map - Modernising Electrochemical Enzymology To Map Electron Transfer" EP/X027724/1.

References

- [1] Yates NDJ, Hudson L, Schwabe O, Parkin A. Langmuir. 2025 Mar 25;41(11):7386-7395.
- [2] Yates NDJ, Hatton NE, Fascione MA, Parkin A. Chembiochem. 2023 Aug 15;24(16):e202300313.
- [3] Yates NDJ, Miles CG, Spicer CD, Fascione MA, Parkin A. Bioconjug Chem. 2024 Jan 17;35(1):22-27.
- [4] Hewson AR, Lloyd-Laney HO, Keenan T, Richards SJ, Gibson MI, Linclau B, Signoret N, Fascione MA, Parkin A. Chem Sci. 2024 Sep 13;15(39):16086-95.
- [5] Baranska NG, Jones B, Dowsett MR, Rhodes C, Elton DM, Zhang J, Bond AM, Gavaghan D, Lloyd-Laney HO, Parkin A. ACS Meas Sci Au. 2024 May 7;4(4):418-431.